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ON SOME NUMERICAL PROPERTIES OF ARMA PARAMETER ESTIMATION PROCEDURES

11. Jo ,ph Newton

Institute of Statistics,
Texas A&M University

Abstract
This paper reviews the algorithms ii;ed by ntnttsticians for
obtaining efficient estimators of the parameters of a univari-

ate autoregressive moving average (ARMA) time series. The

connection of the estimation problem with the problem of pre--

diction is investigated with particular emphasis on the Kalman

filter and modified Cholesky decomposition algorithms. A
result from prediction theory is given which provides a signi-

ficant reduction in the computations needed in Ansley's (1979)

estimation procedure. Finally it is pointed out that there are
many useful facts in the literature of control theory that need

to be investigated by statisticians interested in estimation

and prediction problems in linear time series models.

Key Words
ARMA models, Maximum likelihood estimation. lifnimum mean square

error prediction, Kalman filter algorithm, Modified Cholesky

decomposition algorithm

1. INTRODUCTION nite order autoregressive process.

Let {(t),tEZ), Z the set of integers, be a The Ar,.A model has been very useful in 2naly-

white noise time series of uncorrelated zero zing time series data. Given a sample reali-
mean random variables having common variance zation YT=(y(1 ),...,Y(T)) from Y(-) one seeks

02. Then the time series (Y(t),tcZ) satisfy- -T Testimators ti'.(&(l),.... ,a(p))T(() . ..
ing

P q B(q)) , and 02 of the parameters a,@, and o2.

¥(t) - -E c(j)Y(t-j)+c(t)+ E 0(k)c(t-k) (1.1)
as well as memory-t, horizon-h, minimum mean
square error linear predictors and prediction

is called an autoregressive moving average pro- variances Y(t+h t), Oh-E(Y(t+h)-Y(t+hlt)}2
cess of order p and q (ARAt(p,q)). If p=0 then

of Y(t+h) given Y(l),...,Y(t) for a variety ofY(-) is a moving average process of order q, memories and horizons t-t1 ,...,t2 , hh1 ,...,h 2 .

MA(q), while if q-0 Y(-) is an autoregressive T
process of order p, AR(p). Thus Y(t+hlt),A Y where A minimizes

-yt,h

Defining a(O)-B(O)-1 and the complex valued poly- S(t)=E(Y(t+h)-?
TYt)2

nomials q and o2tS(th). This gives (see Whittle (1963).
g(z)- E G(J)z j , h(z)" Z 0(E)z , p.4 7) that A satisfies the normal equations

j-0 k-O

we can write (1.1) as rYt-t,h' t,h
p q while
E a(J)Y(t-j)' Z 0(k)c(t-k) 2 T -r

J-O k-O rth'Ry(0)-Et,h ry,t-t,h'

oT (Ry(t+h-l) .... Ry(h)) with Ry(v)-

x(L)Y(t)-h(L)r(t), E(Y(t)Y(t4v)),vEZ, and ry, t is the (txt) Toeplitz

where L is the lag or back shift operator, covarlance matrix of Y, i.e, ry,t has (J,k)th

LJY(t)-Y(t-J), JcZ. If the zeros of g() are element Ry(k-J). We can thus define ry t by its
outside the unit circle then Y(') is stationary, first row; r -TOEPL(Ry(0),....Ry(t-l)).

i.e. it can be written as an infinite order Y.I

moving average process, while if the zeros of The usual assumption made for doing estimation

h(.) are outside the unit circle then Y(,) is and prediction in ARMA models is that c(-) (and

invertible, i.e. it can be written as an infi- thus Y(-)) is a Gaussian process. Thus the maxi-
-



isam likelihood estimators ,0, and 0^2 maximize

the Gauss inii likelih, RI(v) o" (k)0(k+I) . 1 qB~2 YT. : ,)-I2[ ~.Tk-0l (2.4)
L(a,B . )(?W)IFY -texp(-YT r- TYT), ,fqIt(24

while Y(t+hlt) and o2 are the conditional mean
t,h

and variance of Y(t+h) given Y(1),..,Y(t). Then defining the consistent sample autocovari-
ances

In thin pape'r we I) re-view tittemptn 1)y vtntlati- T
cians to obtain &,6, and 2 (or estimators r (v ) T  t1Y(t)Y(t+v ) , jvj < T

T t-l
asympto ically efluivalnt to them), 2) show ow() is found by solving (2.1) with T(V)
recent methods are closely connected with finding T
predictors, and 3) propose an Improvement of replacing RY(v), while j(0) is obtained by first
Ansley's (1979) estimation procedure. This pro- -and I 3 t
cedure is currently regarded, at least in many using ) and RT(-) n (2.3) to obtain con-

situations, as the most numerically efficient sistent estimators R..(0)(0),...,uj(0)(q) which
available. Finally we will be able to compare
the two most popular methods available. are then used In (2.4) to get- i0) via Wilson's

(1969) or Bauer's (1955) algorithm.
2. APPROXIMATE METHODS

Steps 2 and 4 of Hannan's method are performed
There have been three basic types of procedures in the frequency domain by noting from (2.2)
used to estimate the parameters of the ARA model: that the spectral density functions fy(0)
1) estimators that are derived heuristically and

then shown to be asymptotically equivalent to the fx(-), and f C(-) of Y(-), X(-), and &() are

MIE, 2) estimators obtained by maximizinp a func- related by (since f (w)- o2 /2 w , vc[O,2w])
tion asymptotically equivalent to the likelihood 

/

L, and 3) directly maximizing L. The procedures 1g(e w)jFf v)- j lh(eiV)12 f(w), (2.5)
have evolved as both computing software and hard-
ware have improved. Then we can rewrite (2.5) as, dropping arguments

for convenience,
As an example of a type 1 procedure we consider
Hannan's (1969) method. The method consists of gl2f
1) finding consistent initial estimators g(0) Y 2 02 (2.6)

and , 2) performing an alternating proced- 
f2 2w

ure of the form

3) combining (I), (2) to obtain asymptotically fY 02 1

efficient 0, 4) 8 - a, and 5) possibly iterat- 7 = 2, 1 (2.7)

Ing the process by returning to (2) with i re- -2122jg12

placing Y(0). "w/o) 1 gaf 4w2/12 1
S l2. (2.8)

The Initial estimitors &(0) and i(0) are obtained Thus the right hand sides of (2.6),(2.7), and

by noting the following facts about the ARMA (2.8) are in the form of an autoregressive spect-
model: ral density, and thus for v>O,

It q O 2w 1gIf i(j-v)w W (2.9)1) E0 a(J)R(ji-v)=O , vq+l,. .. q+p (2.1) r 0(j)f f. (- a dv " 4  (2.9)

p 2w fv e(J-v)w
2) By writing L n(j)f " a -. (2.10)

J-0 0
g(L)Y (t)h(L) (t)X(t), (2.2) q 2w I gj2 fl i('

we note that X(.)'*IA(q,B,o2 ),ite. X(-) is an r 0()" 2Y eij- d 6 a2 . (2.11)

MA(q) process with parameters B and o2. Thus 1-0 0

by the first equality in (2.2) we have Nov fy can be estimatedby the periodogran

Rx(v). E a(j)*(k)Ry(j+v-k),vcZ, (2.3) fT(w) E RT LK(v)e
Jk-O Tvl<T

while from the second equality we have and since X() - MA(q, 8, 0
2 ) we have that

fx(w) E R (v)
"
i w

v

L.



Then for example, In nn obvious notation, the in thiiq iert ton we consider two such methods

step 9(0) (1) is done.by solving (2.9) with for evaluating L: 1) using the Kalman filter
(0p -i b algorithm and 2) imring covnrinnce matrix de-

g(0) fT' and f O) replacing g, fy,( and f X and composition methods, particularly the Cholesky

the fast Fourier transform used to calculatP a decomposition algorithm. The basic purpose of

rectangular sum approximation to the integrals these algorithms is to obtain the one step ahead -

needed. Then (2.10) is used for ^(1) (l) and prediction errors c(t) - Y(t) - Y(tlt - 1) and

a while (2.11) is used for a(l) * (2) prediction variances t o t-1 .... , ,

Finally the combination of B(1) and B(2) is done since one can easily show that
T T e

2
(t)

using an analogy with two-sage least squares. frY "t
° n 2 

r  
Y " E "

In a pivotal article, Akaike (1973) noted that t wo t t

Hannan's method was the same as one step in To summarize, the two methods currently regarded

directly maximizing L using the Newton-Raphson as most numerically efficient for maximizing L

procedure with an approximation to the Hessian consist of two stages:

matrix of L. This observation led many re- 1) Find initial estimators as described above

searchers to turn their attention to other pos- for Hannas's method.

sible approaches to directly maximize L. We will

consider two of these in the next section. 2) Use an iterative, derivative free nonlinear

As an example of a type 2 estimation procedure optimization algorithm to find the maximum

we consider the method of Box and Jenkins (1970). likelihood estimators, using either the

T -1 Kalman filter algorithm (Akaike (1974),
In large samples the term exp(- YTrYTYT) domi- Harvey and Phillips (1979), Jones (1980),

nates the term irI
-. Thus Box and Jenkins Pearlman (1980), or Gardner, Harvey, and

YT1 Phillips (19890), for example) or the Cho-

suggest maximizing lesky decomposition algorithm (see Pagano

T -1 and Parzen (1973), Pagano (176), Phadke

L'(q, B, C
2IYT) - exp(- IYTyTYT) and Kedem (1978), Ansley (1979), Newton

(1980), Newton and Pagano (1981), for ex-

which can be done in a nonlinear regression ample) to find the e(t) and a2 needed to

framework. Thus it can be shown that evaluate L.t
TT-1

!Try,TYT [c(t)r 
2  (2.12) Kalman Filter Algorithm

where [E(t)) - E(c(t)IYT , a, 8). Thus the Box- Consider the following two equations:

Jenkins procedure consists of replacing - by y H Y + G U (State Equation)

-Q in (2.12) and approximating [c(t)] by back- _t+l tt (otberatione t

forecasting. t 
=  

l 
+  

t (observation equation)

It is generally agreed that in the case of large where the Y's are unobservable N-vectors, the

T and/or zeros of h(z) far from the unit circle X' a

that estimation methods of type 1 and type 2 X's are observable M-vectors, Ht, Gt t and St are

give very reasonable results. However if one known (NxN), (NxL), and (MxN) matrices, and Ut.

is faced with a situation where the above con- V are independent zero mean L and N dimensional

ditions are not satisfied, then the numerical _t

properties of the procedures nullify the bene- white noise series with known covariance matrices

fit of their simplicity. Thus iterations often Qt and R t

fall to converge in a reasonable time and sys-

teum of equations that must he solved become Then given initial values Y0 and P0 . var(Yo)

highly ill-conditioned. Thus there has been a one finds the Yt's and P - cov(Y ) by the Kal-

need for more numerically stable, exact maxi- 
t t

mum likelihood methods. man filter algorithm

3. EXACT MAXIMUM LIKELIHOOD.PROCEDURES Tt+l , t+l - Kt+l(St+l-t+l - t+l

With the advent of iterative nonlinear optimi- Pt+l " W t+l - Kt+ISt+I t+1

zation procedures which require only a starting

value and evaluation of the function to be Zt+ 1 " t K t -K tt+

optimized for given values of its arguments T

(see Dennis and More (1977), for example), the (St+Wt+St+1 + -t

most recent procedures for ARHA parameter esti-
mation have centered on evaluating L for given Wt+ 1 , HtPttl + GtQtG • (3.1)

values of a, B, and o2.
A number of authors in the statistical liters-

L. I



ture h.nve pointed otit that a lmplo npp11roitlon Y(') nql.y nnd DyiJk respectively for t < K.
of this algorithm to ARliA models ran be made to fr _K
obtain thte ie(t) nd n2 -Thum s ne dIf Y(-) is a purely nondeterministic covariance

otb -ai tesitend tRtlonnry time eriee with spectral density

T(t+j)lt+l) - Y(t+Jlt) + ojr.(t+l), function t(-), i.e./ :
j. .... m -2 a 2 exp(2L I logf(w)dv) , 0

p 0Pi

E a(k)Y(t+i-kft) + gmr.(t+), then e(l) - Y(1), while 2

k-i t-1

J-1 . Me(t) - Tt) k r 1 Lv't,t-k (t-k). t •2

where -1 and gj - B(J-1) + %-(k) gj -kj2 : " t t ,
k-1

and in fact (Newton and Pagano (1981))
t+h-1

and m - max(p, q+l). we can write the equation Y(t+hlt) - r Ly,t+h,t+h-ke(t+h-k) (3.3)

of state h k-h

Y -H Y + g C(t+l) ,2 t ,h D (3.4)
_t+ , t t , -k.0 '4t+h't' h4-kyt+h-k't+h-k

T

where g - (g1' g2' .. $ gm), and Further,

H- 0 1 0 ... 0 lim L Y,,-j - 0-0), j. 0 (3.5)

0 0 1 .. 0 K YK,• • •lim Dy,• 02 (3.6)

where the R.(-) are the coefficients in the HA(-)

0 0 0 1 representation of Y(-). While these facts ap-
.(1) pear to be known in the literature of control

theory they do not appear to exist in the sta-
where o(j) - 0 if j > p. tistical literature, at least in the general

form of equations (3.3) through (3.6).
Further, since Y(t4ljt+l) - Y(t+l), we can write
the observational equation Now major simplifications of these equations

occur when Y(.) is an ARMA process. Thus (Pa-
X s Yt + V gano and Parzen (1973), Pagano (1976), Newton

r t(1980)) If Y(.) is an MA(q) we have that rkj,kwhere Xt+ Y(t+l), ST  (1, 0, ..... 0), and

-t+ 0 if lj-ki > 0 and thus Ly,jk - 0 if J - k
Vt+ I is an observationAl error random variable. 0> 0. Further, Pagano and Parzen (1973) state

Cholesky Decomposition Algorithm in an attempt to find Y(t+hlt) and 02h that if
Y(.) - ARMA(p, q, a, B, o2), and one forms the

An (nxn) symmetric matrix An Ls positive defi- p

mite if and only if it can be written series X(t) - E m(J)Y(t-J), t > p. thenJ.0

AL - LnDAL(3.2) X(p+l), ..., X(T) is a realization from an
n A,. An A,n MA(q, @, a2 ) process and one can combine the

where LA. is a unit lover triangular matrix and MA(q) prediction algorithm with an AR(p) pre-
n diction algorithm. Ansley (1979) makes this

DA n is a diagonal matrix with positive diagonal same transformation of Y(.) to X(.) to get theA~ne(t) and 02necessary to evaluate L.

elements. This is the modified Cholesky decom- et

position of A n. We note that we can also write The methods of Pagano and Parzen (1973) and

the Cholesky decomposition An - MAHAn where Ansley (1979) can be summarized theoretically
A,n LA,nD but we will consider exclusively by combining the equations (3.3) through (3.6)

A,n j above with the following theorem due to Newton
the modified decomposition. and Pagano (1981).

The decomposition (3.2) is unique and nested, Theorem

i.e. LAJ D jare the (Jxj) prnci- Let Y(.) ARMA(p, q, a. , o) and Z(.)

pal minors of 1An, DA n, LA,n, and -D respec- AR(p, , o2) with associated covariance matrix

rively for j ' n. Thus we can denote the (J.k)th sequences r - Dt T and r -L
element of L and Dy t in the decompottion of D T hen

the (KxK) covariance matrix ry,K of a time series Z't z'tyThe



r

Ly't - LZ x,t t hX-

Dy,t - D X,t ,2,h k EXt+hkt+h.-k

T -1 t+h
where Xt - (X(l) .... X(t)) LZt Yt has jth E L LZ  2
element Jt LX'tt+h-k *

X(J) - Y(j) , j - I Thus to find the one step ahead prediction
J-1 errors and varanoces ne need only compute the
E a 1(k)Y(j - k) , j - 2, ... P q nonzero elements of the successive rows of LX

k-O -
p until the convergence properties (3.7) and (3.8)
E a(k)Y(J-k) , p p take effect. Further, one can then also find

k-O the Y(t+hft) from these same quantities and the'

where the a1 () are easily obtained by perform- e(). Note however that to find 2,h one also

Ing the Levinson (1914) recursion for j - p-l, needs to find the elements of L z t . These can
1, with a p+(k) - n(k): be found simply hy noting that the upper (phix)

() J+l- +(J+!)- (J+ ) principal minor I, can be found by inverting
(+I i)-a+lur ,

1
J-ri- -lP whl

S - a,(j+l) , the lower triangular matrix Lzp, while

i J < p. LZ.jk - y(J-k), j > k > p ,

Thus where Y(O) - 1, y(l), y(2), ... are the coef-

ficients in the MA(-) representation of Z(-).
r X,t j  aj.l(J-m) Further, the elements in rows p+l, ... in the

M=max(l,j-p) first (p-l) columns of L1 are obtained by
i

S a tl )Ry()1m),i,j>_ k

-max(,i-p) LZ,p+j,k rL Zp+j-r,k ' - p.
r.1l

q-Ili-jl
RX(jIj) - 02 Z1 8(k)6(k+ji-Jr), and

k-0 li L0, 1 k < p
J.Z,p+j k

ri-I 1 q ij > p Thus the predictors and prediction variances
Y(t+hlt) and o2 can be obtained using either

t ,h

the Kalman filter algorithm or the Cholesky de-
0 if 1 < j < p, I > p, and i - j > q composition algorithm. Also the convergence

or if i.j > p and ji-if q properties described in the Cholesky algorithm
can be Incorporated into the Kalman filter al-

and gorithm.

lim LX,K,K-j - 8(J), j - 1, ... , q (3.7) 4. DISCUSSION

list - a2. (3.8) Thus we have seen that algorithms developed
K- Drecently for finding maximum likelihood esti-

mators of ARMA process parameters have essenti-
Thus e(l) - X(l), while ally consisted of applying established algor-

min(qj-l) ithis for finding the minimum mean square error
e(t) -.X(t) - I L t,t-ke(t-k), t > 1 linear one step ahead predictors and prediction

k-1 -tvariances. We have shown how the Cholesky al-
02 - Dx , gorithm can be used to find more than one stept xtt ahead predictors and variances as well. We note

and in fact that both the Kalman filter and Cholesky decom-
p position algorithm can be extended easily to

Y(t+hlt) - X(t+hlt) - e a(J)Y(t+h-jit) the multivariate ARMA case. We also note that
r J-1 we have not attempted -to survey all the recent

X(t+hlt) " E L e (t+ h -k ) w work in the ARMA estimation area, but rather
Xk-h Xthht-) have emphasized those algorithms that appear to

/f be most widely used in the literature.

1. q We consider next the relative speed and stabil-
0 h q ity of the Kalman filter and Cholesky decom-

position algorithms. Pearlman (1980) shows that
*1



the numher of operartons needed to find the e(t) with autoregressive-moving average distur-
and o2 via the Kalman filter algorithm is ap- bances. Biometrika, 66, 49-58.

t
proxinately T(2p I 3m + 3), with m - max(pq+l), Jones, R. H. (1980). Maximum likelihood fitting

while for the Cholesky algorithm it is of ARMA models to time series with missing ob-

T(p + 
1 (q+l)(q-4)). Thus if q > 5 the Kalman servations. Technometrics. 22, 389-395.

algorihm Is aster.Levlnnon, N. (1974). The Wiener P, S error cri-
algorithm in'faster. LvnoN 17) h inrRSerrci

terion in filter design and prediction. Jour-

Now the fact that the Kalman filter algorithm nal of Mathematical Physics, 15, 261-278.

performs a number of "matrix squaring" oper- Newton, H. J. (1980). Efficient estimation of

T has caused multivariate moving average autocovariances.
s (o x Rometrikn, 67, 227-231.

many Investigators to question its stability. Newton, H. J. and Pagano, M. (1981). The

However a number of authors have suggested meth- finite memory prediction of covariance sta-

ods for avoiding these operations (see Paige tionary time series. Texas A&H Statistics.

(1976) for example). The Cholesky decomposition Technical Report N-21.
is well known for Its nuimrical stability (see Pagano. M. and Parzen, E. (1973). Timesboard;

Wilkinson (10967) for example). lIo,ever more A time series package. Proc. of Como. Sci.

work is needed before a final conclusion can be and Stat.: 7th Ann. Sy.p. on the Interface,
made about which of the two methods is to he ed. by W. J. Kennedy, Statistical Laboratory,

preferred. Iowa State Univ., Ames, Iowa.
Pagano, M. (1976). On the linear convergence

Finally we poirt out that there are a variety of a covariance factorization algorithm.

of numerical methods for analyzing linear time Journ. Assoc. Comp. Mach., 23, 310-316.

series models in the work of control theorists Paige. (1976). Numerical computations for some

particularly in a series of papers of Kailath estimation problems in Engineering, Proc. of

(see the references in Aasnaes and Kailath Comp. Sci. and Stat.: 9th Ann. Symp. on the

(1973)) that need to be incorporated into the Interface, Harvard University.

statistical literature. Pearlman, .1. G. (1980). An algorithm for the
exact likelihood of high-order autoregressive-

5. REFERENCES moving average process. Biometrika, 67, 232-
233.

Aasnaes, H. B. and Kailath, T. (1973). An Phadke, M. S. and Kedem, G. (1978). Compu-

innovations approach to least squares esti- tation of the exact likelihood function of

mation - part VII: some applications of multivariate moving average models. Bio-

vector autoregressive moving average models, metrika, 65, 511-519.

IEEE trans on Automatic Control, AC-18, 601- Whittle, P. (1963). Prediction and Regulation

607. by linear least squares methods. English

Akaike, H. (1973). Maximum likelihood identi- Universities Press, London.

fication of Gaussian autoregressive moving Wilkinson, J. H. (1967). The solution of ill-

average models, Biometrika, 60, 25)-265. conditioned linear equations. In Mathematical

Akaike, H. (1914). Mrkovian representation Methods for Digital Computers I. (A. Ralston

of stochastic processes and its applications and H. S. Wili, eds.) 65-93.

to the analysis of autoregressive moving av- Wilson, G. (1969). Factorization of the co-

erage processes. Annals of the Institute of variance generating function of a pure moving

Statistical Mathematics, 26, 363-387. average process. SIAM J. Numer. Anal., 6, 1-7.

Ansley, C. (197T. An algorithm for the exact
likelihood of a mixed at,toregre-sive-moving
average process. Biometrika, 66, 59-65.

Bauer, F. L. (1955). Fin direktes iteration-
sverf.a'ren zur 1hrwitz-Zerlegung nines poly- Accession For
noMa, Archly FIkt. Uh,rtr., q, 2M5-291. - - - "

Box, G. F. I'. and lok ins, G. M. (q70). TimeT

Series Analysis forecasting and control. Hol- DTIC TAB

den-Day, San FranC I, o. Unannoundod L_
Dennis, J. F. and More,. .1..J. (1917). Quasi- Justification

Newton method'i, motivation and theory. SIAM
Rev., 19, 46-89.

Gardner, C., Harvey, A. C. and Phillips, G. D.
(1980). An algorithm for exact maximum like- Distrituton;'

lihood estimation of autoregre;sive-moving AvailaLbility C,;6cn
average models by means of Kalman filtering, Avi. ,ull /',r
JRSS C. 29, 311-322.

Hannan, F. J. (1969). The estimation of mixed Di t pciai
moving average autoregressive systems. io-
metrika, 56, 579-59).

Harvey,-A. C. and Phillips, C. D. (1979). Maxi-
sum likelihood estimation of regression models



DI


